МИР ПЕРИФЕРИЙНЫХ УСТРОЙСТВ ПК

технический журнал для специалистов сервисных служб

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Термоинтерфейсы. Все о термопрокладках (терморезинках).

E-mail Печать

Журнал "Мир периферийных устройств ПК" 


Конягин Алексей, Учебный центр "Эксперт"

автор и преподаватель курса "Ремонт ноутбуков и нетбуков" 


В современных электронных устройствах, и в первую очередь в портативных и мобильных, мы часто встречаем так называемые «терморезинки», выполняющие функцию термоинтерфейсов. Эти терморезинки обеспечивают передачу тепла от чипов к их радиаторам, т.е. заменяют собою хорошо известные теплопроводные пасты.  Так в чем же преимущество «терморезинок» перед пастами, так ли они хороши, почему применяют именно их, все ли терморезинки одинаковы,  и чем отличатся друг от друга. Все эти вопросы мы решили обсудить с нашими читателями.

 

В настоящее время «терморезинки» (но далее мы их будем называть термопрокладками) нашли самое широкое применение. И если в настольных Desktop-платформах продолжается использование традиционных термоинтерфейсов в виде термопаст, то в носимых устройствах и устройствах, подвергающихся механическим вибрациям (DVD-приводы, HDD и т.п.) мы встречаем преимущественно термопрокладки, имеющие значительную толщину.

Применение именно термопрокладок обусловлено несколькими соображениями.

Во-первых, основное преимущество термопрокладок – их значительная толщина – от 0.5 до 5 мм (а иногда и больше). Это позволяет использовать их для заполнения достаточно больших зазоров между электронным компонентом и радиатором. А следует понимать, что большие зазоры означают меньшую прецизионность системы охлаждения, а это, в первую очередь, очень существенно для таких приложений, как ноутбуки. Получается, что производители устройств могут снизить стоимость всей системы за счет снижения затрат на точную «подгонку» системы охлаждения. А в настоящее время именно низкая стоимость становится самым главным потребительским качеством любого продукта.

Кроме того, большие зазоры в системе охлаждения имеют и чисто конструктивную необходимость. Дело в том, что портативная и мобильная техника подвергается значительным вибрациям. Также немаловажно, что малые габариты этих устройств препятствуют использованию в них полноценных систем охлаждения, что приводит к значительному разогреву чипов, и как следствие к их значительным температурным деформациям. При слишком жестком креплении системы охлаждения в этом случае могут возникать механические напряжения, способствующие повреждению чипов и нарушениям пайки. В связи с этим, разработчики вынуждены обеспечивать определенную подвижность в креплении системы охлаждения, а это возможно лишь созданием достаточно больших зазоров.

Во-вторых, термопрокладки эластичные, и поэтому система охлаждения становится достаточно подвижной, и без жесткого крепления удается создать приемлемый теплоотвод. Отсутствие жесткого крепления в системе охлаждения позволяет предотвратить повреждения чипов при температурных деформациях, как самих чипов, так и элементов системы охлаждения.

Термопрокладки, являясь термоинтерфейсом, должны обладать как можно большей теплопроводностью. Давайте для начала определимся в критериях и основных характеристиках теплопроводности.

Для характеристики термоинтерфейсов традиционно применяют два основных параметра:

  • Тепловое сопротивление (Thermal Resistance);
  • Теплопроводность (Thermal Conductive).

 

Тепловое сопротивление

Тепловое (термическое) сопротивление – это способность тела (его поверхности или какого-либо слоя) препятствовать распространению теплового движения молекул. Физики различают несколько типов теплового сопротивления. Мы же остановимся только на тех, которые обычно указываются в описаниях термоинтерфейсов.

В развернутых характеристиках термоинтерфейсов серьезные производители приводят два варианта теплового сопротивления.

Во-первых, это, непосредственно, тепловое сопротивление (Thermal Resistance), обозначаемое [Rth]. Иногда для этого параметра можно встретить термин «абсолютное термическое сопротивление». Этот параметр является величиной, обратной коэффициенту теплопроводности. Единицей измерения является [K/W] (Кельвин/Ватт).

Во-вторых, это, термический импеданс (Thermal Impedance), обозначаемый [Rti]. Эта характеристика учитывает площадь теплопередачи, и измеряется в [K*m2/W] (Кельвин*квадратный миллиметр/Ватт). Но часто в таблицах используют производные величины, например площадь могут указать в квадратных дюймах или в квадратных миллиметрах, а температуру указывают, либо в градусах Кельвина, либо в градусах Цельсия. Приведем два примера обозначения одного и того же значения температурного импеданса:

  • 108 ºС*mm2/W (градусов Цельсия на квадратный миллиметр);
  • 0.18 K*in2/W (градусов Кельвина на квадратный дюйм).

Физический смысл теплового сопротивления предполагает, что его величина для хорошего термоинтерфейса должна быть, как можно меньше.

 

Теплопроводность

Теплопроводность – это процесс переноса внутренней энергии от более нагретых частей тела к менее нагретым частям, осуществляемый хаотически движущимися частицами (атомами, молекулами, электронами и т. п.). Теплопроводностью называется также количественная характеристика способности тела проводить тепло.

Способность вещества проводить тепло характеризуется коэффициентом теплопроводности (удельной теплопроводностью). Численно эта характеристика равна количеству теплоты, проходящей через образец материала толщиной , площадью 2, за единицу времени (секунду) при единичном температурном градиенте. Коэффициент теплопроводности измеряется в [Вт/(м•K)], а в зарубежных источниках эта величина обозначается [W/mK]. Обозначается теплопроводность символом [.

Физический смысл теплопроводности предполагает, что чем выше ее значение, тем это лучше для термоинтерфейса. Именно эту характеристику и принято указывать в качестве основного параметра термоинтерфейса, и именно по значению теплопроводности сравнивают различные термоинтерфейсы.

После небольшой теоретической подготовки вернемся к термопрокладкам. Как и практически любой товар в современном мире, термопрокладки выпускаются целым рядом производителей, причем каждый из этих производителей предлагает сразу несколько типов термопрокладок.

 

Во-первых, и самое главное, термопрокладки различаются теплопроводностью.

Во-вторых, каждый тип термопрокладок, представлен несколькими вариантами толщины (от 0.5 мм до 5 мм).

В-третьих, термопрокладки могут отличаться «конструктивно», т.е. могут иметь одну или две клеящих поверхности, могут быть однослойными и двухслойными.

 

Поэтому при выборе термопрокладки для обеспечения надежного и качественного теплоотвода, необходимо определить ее тип и подобрать требуемую толщину.

Как же различать термопрокладки? Естественно, для этого необходимо обратиться к документации производителя термоинтерфейсов. При отсутствии такой документации, следует попытаться выяснить все параметры термоинтерфейса у продавца, которому вы доверяете. Если же и здесь неудача, то возможно, лучше отказаться от использования подобных «безродных» термопрокладок, т.к. действие наугад в таком важном деле, как система охлаждения, выглядит совсем непрофессионально.

Чтобы иметь возможность отличать один тип термопрокладок от другого, их производители используют цветовую маркировку, т.е. термопрокладки с разными характеристиками имеют различные цвета.

Четких и однозначных правил по маркировке термопрокладок не существует, и каждый производитель может реализовать собственную градацию своей продукции, и использовать такие цвета для выпускаемых термопрокладок, какие ему захочется. Приходилось встречать попытки отдельных специалистов найти зависимость теплопроводности прокладок и их цвета.

Попробуем и мы.

Анализ большого количества документации на термопрокладки разных производителей позволяет выявить некоторую тенденцию (но весьма неочевидную) с цветовой маркировкой.

Так как основной характеристикой термоинтерфейсов, к которым относятся и термопрокладки, является теплопроводность, то именно эта характеристика положена в основу цветовой классификации.

 

  • серый – теплопроводность 5 W/mK;
  • голубой – теплопроводность 3 W/mK;
  • зеленый – теплопроводность 1.5 W/mK;
  • розовый – теплопроводность 1 W/mK.

 

Здесь мы перечислили основные цвета, используемые в производстве термопрокладок, хотя существуют и другие. Так, например, производитель Kerafol, выпускающий термопрокладки под торговой маркой Keratherm, использует и другие цвета для маркировки:

 

  • желтый (1 W/mK)
  • оранжевый (2.5 W/mK);
  • «шоколадный» (4.2 W/mK),
  • коричневый (5 W/mK),
  • фиолетовый (5.5 W/mK),
  • серый (6 W/mK)

 

Один и тот же цвет (в особенности серый) может соответствовать термопрокладкам с разной теплопроводностью, поэтому не следует слепо доверять цветовой классификации, хотя при отсутствии какой-либо другой достоверной информации, можно воспользоваться приведенной выше классификацией.

У еще одного производителя термопрокладок – компании Laird – цветовая гамма, используемая для термопрокладок очень скудная. Почти все их прокладки светло-серого или белого цвета имеют самые различные значения теплопроводности: от 1 до 5 W/mK. И только термопрокладки с теплопроводностью 2.8-3.0 W/mK, имеют розовый, голубой, сине-фиолетовый и темно-серый цвет. Все эти многоцветные термопрокладки с одной величиной теплопроводности принадлежат к разным семействам (Tflex 500 Series, Tflex 600 Series, Tflex SF600 Series, Tflex HR600 Series). Различия в характеристиках всего многообразия этих термопрокладок можно изучить по информации размещенной на корпоративном сайте компании Laird.

Из приведенных конкретных примеров реальных производителей можно еще раз сделать вывод о непредсказуемости цветовой маркировки термопрокладок. В этой связи еще раз следует подчеркнуть важность достоверной информации о продукте, размещенной на официальном сайте производителя.

Здесь же хочется обратить внимание на термопрокладки торговой марки Coolian, которые в настоящее время продаются повсеместно, и имеются в наличии почти у всех компаний, реализующих электронные компоненты и различные расходные материалы к ним. Термопрокладки Coolian представлены очень широким ассортиментом, как по теплопроводности (от 1 до 5 W/mK), так и по толщине (от 0.5 до 5 мм). Термопрокладки Coolian разной теплопроводности имеют различные цвета:

 

  • серый (5 W/mK)
  • голубой (3 W/mK)
  • светло-серый (3 W/mK)
  • розовый (1 W/mK)

 

На соответствующем сайте даже можно найти основные характеристики этих термопрокладок. Но есть один момент, который настораживает. Дело в том, что официального сайта производителя этих прокладок найти не удалось. Ни страны, ни города, ни названия фирмы-производителя, ни тем более адреса и контактных данных – ничего этого нет. Есть только Интернет-сайт реселлера, на котором не удалось найти DataSheet'ов в виде PDF-файлов с графиками термопроводности и прочими соответствующим атрибутами. Серьезные компании так себя не ведут. Короче, неясно кто производит термопрокладки Coolian (можно, конечно, догадываться), а соответственно и полного доверия к такой продукции мы не испытываем. Но критерием, как мы считаем, все-таки, должна быть практика, и сходу отвергать неизвестный продукт, пожалуй, не стоит. При использовании этих термопрокладок, наверное, следует посерьезнее отнестись к вопросу тестирования температурных режимов системы.

Все, сказанное в предыдущем абзаце, можно отнести и к термопрокладкам, распространяемым под торговой маркой Phobia. На сайте не приводится никакой информации об этих термопрокладках, кроме теплопроводности и цены.

nout1

 

Теплопроводность и деформации

При фиксации системы охлаждения термопрокладки достаточно сильно деформируются, сжимаясь до толщины зазора между чипом и радиатором. В процессе такого сжатия толщина прокладок иногда уменьшается почти в два раза. Изменяются ли, и каким образом изменяются характеристики термопрокладок при таких серьезных деформациях?

Некоторые специалисты высказывают мнение, что значительная деформация ухудшает теплопроводность терморезинок. Возможно это и так. Но давайте, все-таки, попробуем с этим вопросом разобраться.

Если деформация действительно и ухудшает свойства прокладок, то такая деформация должна быть очень большой, т.е. должна быть, фактически, разрушающей. И что означает сильная деформация? Сжатие термопрокладки в какой степени (в два, в три, в четыре раза или больше) можно считать сильным? Однозначных и достоверных данных на этот счет найти не удалось, но попытаемся обратиться к документации производителей термопрокладок.

Производители термопрокладок в своих описаниях утверждают, что, наоборот, при уменьшении толщины прокладки (т.е. при ее сжатии) теплопроводность только возрастает. Однако в DataSheet'ах рассматривается сжатие термопрокладок в 2...2,5 раза. Возможно, что дальнейшее сжатие (в три и более раз) будет приводить к разрушению их структуры и ухудшению их свойств.

Если же обратиться к официальной документации производителей, то можно говорить, что при уменьшении толщины прокладки ее теплопроводность возрастает. Но зависимость здесь нелинейная. Еще следует подчеркнуть, что зависимость теплопроводности от степени сжатия является индивидуальным свойством каждого вида термопрокладки. Даже для термопрокладок одного типа, но разной толщины, эти зависимости различаются. Обычно у более толстых термопрокладок теплопроводность увеличивается гораздо в большей степени при одинаковой степени деформации.

На рис.1 мы приводим зависимость термического сопротивления от толщины прокладки. В качестве примера мы выбрали прокладки Keratherm типа 86-500. График зависимости можно найти в DataSheet на эти прокладки. Обратите внимание, что график показывает зависимость термического сопротивления от толщины, а, как мы помним из вводной теоретической части, теплопроводность является обратной величиной термического сопротивления. На графике приведены зависимости для термопрокладок одного типа, но четырех разных начальных толщин (от 0.5 мм до 3 мм). Думается, что комментарии здесь излишни.

 

keratherm_86-500_86-525_86-600

Рис.1  Зависимость теплового сопротивления от степени сжатия термпрокладок Kerafool Keratherm 86-500

 

Механические характеристики термопрокладок

К важным характеристикам термопрокладок относят и их механические свойства, такие как твердость, способность сжиматься, выдерживать механические деформации. Ожидаемо, что чем мягче термопрокладка (при прочих равных характеристиках) тем лучше, так как она будет оказывать меньшее давление на чип.

Для оценки жесткости термопрокладок обычно используют два параметра:

  • твердость;
  • модуль Юнга.

 

Твердость

Твердость по Шору (Hardness) – это один из методов измерения твердости материалов путем вдавливания. Как правило, используется для измерения твердости низкомодульных материалов, таких как, полимеры (пластмассы, эластомеры, каучуки и т.п.).

Метод и шкала были предложены Альбертом Ф. Шором в 1920-х годах. Он же разработал соответствующий измерительный прибор, называемый дюрометром. Метод позволяет измерять глубину начального вдавливания, глубину вдавливания после заданных периодов времени или и то и другое вместе.

Метод является эмпирическим испытанием. Не существует простой зависимости между твердостью, определяемой с помощью данного метода, и каким-либо фундаментальным свойством испытуемого материала.

Твёрдость по Шору обозначается в виде числового значения шкалы, к которому приписывается буква, указывающая тип шкалы.

 

  1. Пример 1: [Твёрдость по Шору 80A] (твердость составляет 80 единиц по шкале А).
  2. Пример 2: [Твердость по Шору (00) 25] (твердость составляет 25 единиц по шкале ОО).
  3. Пример 3: [Hardness Shore OO – 70] (твердость составляет 70 единиц по шкале ОО).

 

Тип шкалы зависит от способа измерения деформация материала. Так, например, при измерении по шкале [А] материал деформируют острым клином. А при измерении по шкале [OO] (что традиционно применяется для термопрокладок) вдавливание осуществляется закаленным стальным шариком диаметром 2.38 мм при прижимном усилии, равном 400 г.

Мы не будем приводить все многообразие материалов и соответствующие им значения твердости. Ограничимся лишь примером из шести материалов, всем хорошо известных. Данные мы приводим в соответствии со шкалой [OO] (см. таблицу 1).

 

Материал

Твердость по Шору (ОО)

Гелевое сиденье велосипеда

15...30

Жевательная резинка

20

Виброгасящий материал Сорботан

40

Силиконовый герметик

55...76

Мягкий художественный ластик

70

Велосипедная камера

80

 

При установке новой термопрокладки, по возможности, желательно устанавливать прокладки с таким же или с меньшим значением твердости. Анализ характеристик термопрокладок показывает, что твердость по Шору (ОО) составляет от 20 до 80 единиц. Твердость по Шору (ОО) является главным параметром, описывающим механические свойства термопрокладок, и поэтому в обязательном порядке приводится в DataSheet'ах на термопрокладки.

 

laird_1

 

Рис.2  Выдержка из DataSheet на термопрокладки семейства Tflex SF600 производства компании Laird Technologies. В документации приводится только твердость по Шору.

 

Модуль Юнга

Модуль ЮнгаYoungs Modulus (модуль упругости) – физическая величина, характеризующая свойства материала сопротивляться растяжению или сжатию при упругой деформации. Назван в честь английского физика XIX века Томаса Юнга. В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях.

Естественно, что чем больше эта величина, тем большее давление оказывает термопрокладка на чип при фиксации системы охлаждения. Чаще всего модуль Юнга в документации на термопрокладки указывается при условии сжатия термопрокладки до половины ее толщины.

Следует отметить, что не все производители указывают модуль Юнга для своих термопрокладок, считая этот параметр не таким значимым.

 

kheraterm

 

Рис.3  Выдержка из DataSheet на термопрокладки семейства Keratherm 86/xxx производства компании Kerafol. Здесь в документации приводится информация не только о твердости по Шору, но и по значению модуля Юнга.

 

Электрические характеристики термопрокладок

Большинство термопрокладок, использующихся в качестве термоинтерфейсов для процессоров, чипсетов, мощных ключей и т.п., являются диэлектриками, не проводящими электрические токи. Диэлектрики характеризуются напряжением пробоя, которое у термопрокладок превышает значение 1 кV. Таких напряжений на процессоре не бывает, а поэтом всерьез учитывать этот параметр мы не станем.

 

Рекомендации по использованию термопрокладок

Известно, что штатные термопрокладки через некоторое время, теряют эластичность и теплопроводность. Поэтому старые термопрокладки необходимо менять при проведении профилактических или ремонтных работ.

Как правило, термопрокладки имеют одну липкую поверхность, что необходимо для их монтажа и обеспечения лучшей теплопроводности. Некоторые термопрокладки сделаны с двумя липкими поверхностями. Производитель может защитить липкую поверхность термопрокладки защитной пленкой, которую необходимо убрать в момент установки. Если толщина имеющейся термопрокладки меньше зазора между радиатором и чипом, то можно использовать вместе несколько прокладок для достижения необходимой толщины.

Следует быть очень осторожным при повторном перемещении прокладки с алюминиевой или анодированной поверхности, т.к. ее очень легко разорвать или она может расслоиться.

 

Установку термопрокладки следует осуществлять в следующем порядке:

  1. Отрезать необходимое количество материала, размером с чип или чуть больше.
  2. Удалить пленку с липкой поверхности термопрокладки (при ее наличии).
  3. Предварительно слегка согнув прокладку, наподобие рулона, уложить, начиная с края, на поверхность, т.е. термопрокладку необходимо раскатать на поверхности чипа. Это необходимо для удаления воздуха в месте контакта термопрокладки и чипа.
  4. Придерживая прокладку за край, удалить вторую защитную пленку (при ее наличии).
  5. Установить радиатор.

При установке новой термопрокладки следует обратить внимание на то, что ее толщина должна быть на 0,1...0,5 мм больше, чем толщина деформированной части старой прокладки.

 

Но как быть, если толщина термопрокладки неизвестна, или имеется термопрокладка меньшей толщины? Поступить в этом случае можно следующим образом.

  1. Установить термопрокладку, толщиной 0.5мм на чип так, как это было описано ранее.
  2. Установить и закрепить радиатор системы охлаждения винтами.
  3. Открутить и снять радиатор.
  4. Проверить, была ли прижата термопрокладка радиатором, удостоверившись в наличии или отсутствии области деформации, оставленной на термопрокладке чипом.
  5. Если термопрокладка не была прижата, установить ещё одну термопрокладку, поверх предыдущей, согласно вышеописанной инструкции.
  6. Повторить шаги 2-5 до тех пор, пока термопрокладка не окажется прижатой

Результирующая теплопроводность нескольких термопрокладок будет не хуже, чем одной целой, если все слои были уложены правильно (по крайней мере, так заявляют их производители).

 

Сравнение термопрокладок с термопастами

kpt8_3

В заключение обзора, хотелось бы сравнить эффективность термопрокладок с термопастами. Как мы выяснили, основным параметром термоинтерфейса является теплопроводность, поэтому именно эту характеристику мы возьмем в качест

ве основного критерия для сравнения. Итак, простой вопрос: «Термопрокладки лучше или хуже термопаст?»

Если дать такой же короткий ответ, то можно утверждать, что термопрокладки хуже. Преимущества, которые дает их применение, мы рассмотрели в начале статьи, но вот по теплопроводности, в среднем, термопрокладки уступают термоп

Конечно же, не все термопасты одинаковы. Они тоже очень сильно отличаются по теплопроводности. Но лучшие образцы термопаст имеют теплопроводность 8...10 W/mK, что даже для самых лучших образцов термопрокладок является недостижимым значением.астам.

Конечно же, имеются и термопасты с теплопроводностью 1...2 W/mK, и такие термопасты, как мы видим, будут во многих случаях уступать термопрокладкам. Многие специалисты часто применяют пасту КПТ-8 в качестве термоинтерфейса для процессора и чипсета. Так вот, таким специалистам сообщаем, что теплопроводность КПТ-8 не превышает 1.0 W/mK, а при комнатной температуре находится на уровне 0.7 W/mK. Назвать это хорошим термоинтерфейсом, как-то, язык не поворачивается. А поэтому, и в первую очередь, в системах охлаждения ноутбуков, следует воздержаться от использования КПТ-8. Поищите другие варианты. Надеемся, что теперь вы знаете, на что обратить внимание при выборе термоинтерфейса.

Методики диагностирования ноутбуков и технологии компонентного  ремонта в учебном курсе "Профессиональный ремонт и обслуживание портативных компьютеров (ноутбуков и нетбуков)"

 


 

Понравилась статья? Узнали что-то новое и интересное?

Вы можете выразить благодарность автору статьи скромным денежным переводом.

рублей Яндекс.Деньгами
на счет 41001206996010 (Развитие журнала "Мир периферийных устройства ПК")
 

Профессиональная инфракрасная паяльная станция


Яндекс.Метрика
Рейтинг@Mail.ru Яндекс цитирования