МИР ПЕРИФЕРИЙНЫХ УСТРОЙСТВ ПК

технический журнал для специалистов сервисных служб

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Зарядные устройства ноутбуков. Основы функционирования и схемотехники. (Часть I).

E-mail Печать

Журнал "Мир периферийных устройств ПК" 


Конягин Алексей, Учебный центр "Эксперт"

автор и преподаватель курса "Ремонт ноутбуков и нетбуков" 


Зарядные устройства, обозначаемые на схемах, как Charger, являются ключевым звеном в процессе запуска ноутбука.Название «зарядное устройство» совсем не означает, что оно используется только для заряда аккумулятора. Этим модулем формируется первичное напряжение, из которого затем вырабатываются все остальные напряжения, т.е. Сharger является одним из ключевых звеньев во всей системе энергообеспечения ноутбука. И поэтому неудивительно, что статистика неисправностей ноутбуков говорит о необходимости обсуждения схемотехники данного модуля.

 

В среде специалистов и пользователей ноутбуков так сложилось, что зарядными устройствами часто называют блоки питания, формирующие постоянное напряжение величиной примерно +19V. Это напряжение получают из сетевого переменного напряжения 220 Вольт путем импульсного преобразования. Но называть этот преобразователь, этот блок питания,  зарядным устройством как-то не совсем корректно. К нему в большей степени подходит термин «сетевой адаптер». 

Зарядное устройство (Charger) в ноутбуках выполняет, как правило, следующие основные функции:

  • формирование зарядного напряжения/тока для аккумуляторной батареи;
  • коммутацию «первичного» напряжения, необходимого для формирования всех системных напряжений;
  • информирование системных контроллеров о подключении сетевого адаптера;
  • автоматическое управление мощностью, потребляемой от сетевого адаптера (функция DPM) .

Упрощенную функциональную схему Charger'а мы попытались представить на рис.1.


charger1_1

Рис.1 Блок-схема зарядного устройства ноутбука

 

Формирование зарядного напряжения аккумулятора

Исходя из названия модуля, эта функция является его важнейшей функцией. Как известно, в аккумуляторных батареях ноутбуков, в настоящее время широко применяются литий-ионные аккумуляторы (LiOn). Номинальным напряжением одного литий-ионного элемента является 3.6 Вольт. На практике же, заряд этих элементов осуществляется напряжением 3.9 – 4.3 вольт/элемент. Также хорошо известно, что увеличение емкости батарей достигается последовательно-параллельным включением нескольких аккумуляторов.

 

charger1_2

Рис.2 Трехэлементная (3-Cell)  батарея. Каждый элемент состоит из двух параллельно-включенных  "банок". В результате получаем батерю типа "3S-2P"

 

Чаще всего, батарея образована тремя элементами (Cell's), каждый из которых, в свою очередь, состоит из двух или трех параллельно-включенных «банок» (рис.2). Разумеется, что такие много-секционные батареи требуют увеличенного зарядного напряжения, величину которого очень легко подсчитать: необходимо напряжение заряда одного элемента умножить на количество элементов в цепочке. Таким образом, простая арифметика показывает, что для заряда 3-элементных батарей необходимо напряжение 11,7...12,9 Вольт. Отличить 3-элементные батареи можно следующим образом:

  • во-первых, в прайс-листах реселлеров эти батареи могут быть обозначены, как 3-Cell;
  • во-вторых, по напряжению батареи – 3-х элементные аккумуляторы имеют выходное напряжение, равное 10.8 Вольт (иногда попадаются батареи с напряжением 11.1 Вольт). Еще раз обращаем внимание, что это лишь номинальные напряжения аккумуляторов, а на самом деле напряжение на них несколько выше, например, 12.6 Вольт.

Наряду с 3-Cell батареями, существуют и 4-х элементные аккумуляторы (рис.3). Эти батареи требуют зарядного напряжения величиной от 15.6 В до 17.2 В. Аккумуляторы этого типа в прайс-листах обозначаются, как 4-Cell, а их выходное напряжение, как правило, равно 14.4 В (но изредка попадаются батареи с выходным напряжением 14.8 Вольт).

 

 

charger1_3

Рис.3 Четырехэлементная (4-Cell)  батарея. Каждый элемент состоит из двух параллельно-включенных  "банок". В результате получаем батерю типа "4S-2P"

 

Кроме того, ряд ноутбуков позволяет работать как с 3-элементными, так и с 4-элементыми батареями, автоматически изменяя формируемое зарядное напряжение, в зависимости от типа подключенной батареи. Естественно, что Charger таких ноутбуков должен «уметь заряжать» батареи разных типов, формируя разное выходное напряжение и разные выходные токи.

Сетевой адаптер (блок питания), являющийся главным источником энергии для ноутбука, формирует постоянное напряжение номиналом 19 Вольт. А для заряда аккумуляторов, как мы видели, требуется меньшее напряжение. Поэтому в составе ноутбука присутствует зарядное устройство, формирующее напряжение соответствующего номинала, достаточное и необходимое для заряда батареи. Таким образом, фактически, Charger представляет собой понижающий DC-DC преобразователь импульсного типа, в котором могут быть реализованы и некоторые дополнительные функции. Например, такие как:

  • включение и выключение преобразователя по командам от управляющего контроллера;
  • контроль выходного тока, т.е. контроль тока, потребляемого аккумуляторной батареей в момент ее заряда;
  • контроль выходного зарядного напряжения, прикладываемого к аккумулятору, с целью его регулировки и стабилизации;
  • управление величиной зарядного тока;
  • определение подключения аккумуляторной батареи с целью предотвращения работы в режиме холостого хода и др.

 

 

Коммутация первичного напряжения

Источником энергии для ноутбука может являться либо сетевой адаптер, когда он подключен к питающей сети 220 Вольт, либо аккумуляторная батарея. В составе Charger'а имеются транзисторные ключи, которые коммутируются таким образом, чтобы на выходе Charger'а всегда присутствовало напряжение VDC, из которого затем формируются все необходимые для работы ноутбука напряжения. Это напряжение VDC является либо напряжением сетевого адаптера (т.е. напряжением 19В), либо напряжением от аккумулятора (например, 12 В).

Логика работы данной схемы очень простая. Если сетевой адаптер подключен и формирует напряжение 19В, то Charger на свой выход начинает транслировать именно это напряжение. Если же напряжение сетевого адаптера не обнаружено, то происходит переключение на аккумуляторную батарею. Фактически, схема коммутации первичного напряжения представляет собой два ключа и контроллер, анализирующий наличие входного напряжения 19В (рис.4).

 

charger1_4 

Рис.4 Принцип выбора "первичного" источника энергии для питания ноутбука

 

К функциям входных коммутаторов, можно отнести и функцию контроля входного тока. Для этого в схему Charger'а вводится цепь измерения тока, традиционно состоящая из токового датчика, в виде низкоомного резистора. Эта цепь позволяет измерять величину тока, потребляемого источниками питания ноутбука от сетевого адаптера, т.е. позволяет измерять ток в канале 19V. Величину входного тока анализирует контроллер зарядного устройства, и, если измеренное значение превышает заданную величину, контроллер зарядного устройства закрывает входной ключ канала 19V. Такая защита позволяет исключить работу сетевого адаптера в случае коротких замыканий при неисправностях в питающих каскадах ноутбука.

 

Информирование о подключении сетевого адаптера

Эта функция тесно связана с предыдущей. Если контроллер Charger'а обнаружил наличие напряжения 19В от сетевого адаптера, то он не только переключает ноутбук на работу именно от этого напряжения, но и «сообщает» об этом контроллеру клавиатуры - KBC (EC) или «южному мосту» посредством генерации сигнала, часто обозначаемого на схемах, как ACOK. Активность сигнала ACOK приводит к тому, что зарядное устройство запускается и начинается зарядка аккумуляторной батареи, а, кроме того, выводится соответствующая индикация режима работы ноутбука.


nout1

Сделав краткий обзор общих принципов функционирования Charger'а, переходим к рассмотрению схемотехнических решений, положенных в основу построения зарядных устройств.

Центральным элементом любого Charger'а является микросхема-контроллер, набор функциональных возможностей которого может быть очень широким. Однако для построения Charger'а могут быть использованы и достаточно примитивные контроллеры.

В некоторых, уже достаточно старых, моделях ноутбуков в качестве микросхем контроллеров зарядного устройства приходилось встречаться с такой микросхемой общего применения, как TL494 (специалисты, которые занимались системными блоками питания AT и ранними ATX, с этой микросхемой должны быть очень хорошо знакомы). Естественно, что такое решение отличается достаточно громоздкой схемотехникой и сложностью реализаций даже самых простых функций. Поэтому о подобных схемах следует говорить, как об экзотике, и брать их за пример для обсуждения не стоит.

В настоящее время существует целый ряд специализированных микросхем, разработанных исключительно для применения в ноутбуках и именно в качестве Charger'а. Микросхемы этого класса выпускаются, в основном, такими производителями, как Maxim, Intersil, Fujitsu Electronics, Texas Instruments (семейство BQ). Интегрированные Charger'ы позволяют значительно упростить разработку схемы зарядного устройства и снизить ее габариты. Кроме того, такие контроллеры «нагружены» большим количеством дополнительных функций, о которых говорилось в начале статьи. В результате, в современных ноутбуках повсеместно применяются интегральные Charger'ы, и схемотехника всего зарядного устройства определяется типом и функциональными характеристиками именно этой микросхемы.

Так как микросхем интегральных Charger'ов сейчас достаточно много, то и различных вариантов построения зарядного устройства тоже хватает. Однако, несмотря на все разнообразие схем зарядных устройств и применяемых в них контроллеров, постараемся выделить и охарактеризовать их основные элементы.

 

Детектор сетевого адаптера

Определение входного питающего напряжения, формируемого сетевым адаптером, относится к основным функциям Charger'а. Практически во всех современных микросхемах Charger'ов эта функция является внутренней, и для ее реализации имеется отдельный контакт, на который подается напряжение, пропорциональное уровню входного напряжения 19VDC, формируемого адаптером. В наименовании этого контакта чаще всего встречается аббревиатура "AC" (например, ACIN или ACSET и т.п.), указывающая на то, что данным сигналом детектируется подключение ноутбука к питающей сети переменного тока.

 

charger1_5

 

Рис.5  Детектор сетевого адаптера

 

Детектор сетевого адаптера представляет собой делитель напряжения и компаратор, интегрированный в микросхему Charger'а (рис.5). На вход детектора подается напряжение +19V, которое резистивным делителем уменьшается до напряжения, допустимого для входа микросхемы, например, до 5 Вольт или до 2.5 Вольт. Далее, внутри микросхемы это напряжение сравнивается с внутренним опорным напряжением, номинал которого является уникальным для каждой микросхемы Charger'а (но обычно близок к уровню 1.2В или 2В). Компаратор осуществляет контроль входного напряжения ноутбука, т.е. не позволяет ноутбуку начать работу от адаптера при слишком низком питающем напряжении.

Схема детектора сетевого адаптера формирует сигнал, который мы условно назовем «ACOK». Активизация сигнала ACOK подтверждает, что обнаружено подключение сетевого адаптера, и что его напряжение соответствует рабочему диапазону. Сигнал ACOK, как правило, является выходом с открытым коллектором (стоком), а его уровень активности (высокий или низкий) определяется типом микросхемы Charger'а (рис.6). Сигнал ACOK подается на вход микросхемы ICH («южный мост») или на вход микросхемы управляющего контроллера, в качестве которого обычно используется KBC.

 

charger1_6

Рис.6  Выходной сигнал детектора может быть активен как высоким уровнем, так и низким

 

Выход с открытым коллектором/стоком предполагает «подтягивание» этого контакта к шине питания через ограничивающий резистор. Но откуда же возьмется «подтягивающее» напряжение, если ноутбук и все его элементы еще не начали свою работу?

Очень часто подтягивающее напряжение для выхода ACOK формируется самой микросхемой Charger-контроллера. В состав контроллера вводится линейный стабилизатор, формирующий постоянное напряжение из питающего напряжения микросхемы, т.е. из +19V, подаваемых на вход DCIN. Выход линейного стабилизатора часто обозначается как LDO (рис.7). Выходное напряжение этого линейного стабилизатора обычно равно +5 Вольт. В некоторых случаях в качестве «подтягивающего» напряжения для выхода ACOK используется опорное напряжение, также формируемое внутренним источником опорного напряжения, и обозначаемое VREF.

 

charger1_7

Рис.7 "Подтягивание" выхода с открытым стоком к логической единице. Источником напряжения является внутренний линейный стабилизатор LDO.

 

Напряжение +19V для детектора сетевого адаптера берется непосредственно с входного питающего разъема (см.рис.5), но в некоторых ноутбуках на входе зарядного устройства устанавливается ключ, открывающийся самостоятельно или Charger-контроллером в момент появления входного напряжения +19V (рис.8). Такой ключ можно рассматривать в качестве буферного элемента, выполняющего функцию защиты от всплеска напряжения и от влияния переходных процессов при подключении. Также этот ключ не позволит включиться схеме при недостаточном напряжении от адаптера, что можно рассматривать в качестве защиты от неисправности сетевого адаптера, хотя функция защиты от запуска ноутбука при неисправном адаптере, обычно реализована, компаратором сигнала ACIN. Ведь если входное напряжение ACIN будет меньше порогового напряжения компаратора, выходной сигнал ACOK не должен генерироваться.

 

charger1_8

Рис.8 Входной транзистор, открывающийся автоматически

 

Входной ключ Charger'а является полевым P-канальным транзистором. Чаще всего это AP4435 или его аналоги. В случае неисправности входного транзистора зарядного устройства и невозможности идентификации его маркировки, можно смело ставить именно AP4435. Следует отметить, что неисправность этого транзистора является одной из основных проблем Charger'а.

С другой стороны, нередки и схемы без входных транзисторных ключей. Однако современная схемотехника ноутбуков нацелена на применение входных транзисторных ключей, так как их наличие, кроме всего прочего, позволяет организовать дополнительные функции.

 

charger1_9

 

Рис.9  Реализация дополнительных защитных функций в Charger'е ноутбука Samsung NP-P55

 

В качестве примера такой дополнительной функции, можно привести схему «зарядника» ноутбука Samsung NP-P55 (рис.9). В этой схеме первоначальное открывание ключа обеспечивается резистивным делителем R516/R517, который создает на затворе транзистора Q2 напряжение, меньшее, чем на его истоке. Это и является условием открывания Q2. В результате, на стоке Q2 появляется напряжение VDC_ADPT, равное 19 Вольтам. Это напряжение используется для питания Charger-контроллера и формирования всех остальных напряжений ноутбука.

Кроме делителя, состоянием транзистора Q2 управляет еще и транзистор Q503. Открывание транзистора Q503 приводит к подаче на затвор транзистора Q2 напряжения от сетевого адаптера, т.е. напряжения на истоке и затворе выравниваются. Это приводит к запиранию Q2. Осталось выяснить, что же может привести к открыванию транзистора Q503.

Затвор транзистора Q503 управляется триггером, состоящим из транзисторов Q501 и Q502. Срабатывание триггера произойдет в случае открывания хотя бы одного из стабилитронов ZD500, ZD501 или ZD503. В свою очередь, эти стабилитроны открываются в случае значительного превышения напряжения в каналах 5V, 1.8V, 1.05V, 1.25V, 1.5V. Перечисленные напряжения питают процессор, чипсет, графический контроллер и память, и увеличение этих напряжений способно натворить много бед. Критическое превышение номинала этих напряжений может произойти только в случае пробоя транзисторных ключей в DC-DC преобразователях, формирующих эти напряжения из напряжения VDC.

Срабатывание триггера означает, что Q501 и Q502 оказываются открытыми, и это будет продолжаться до тех пор, пока на входе ноутбука будет присутствовать напряжение +19V. В этом случае, для повторного запуска ноутбука необходимо обязательно вынуть штекер сетевого адаптера, подождать некоторое время и снова подключить ноутбук к источнику питания.

Открытый триггер обеспечивает подачу на затвор Q503 низкого уровня, что приводит к открыванию Q503 и закрыванию Q2. В результате, 19V (VDC) перестает подаваться на DC-DC преобразователи и ноутбук выключается. Работа при повышенном напряжении основных элементов системы исключается.

Так как для работы детектора и его компаратора требуется наличие опорного напряжения, то, разумеется, необходимо обеспечить питанием микросхему Charger-контроллера. Питающим напряжением для микросхемы является все те же 19V от сетевого адаптера. Только эти 19 Вольт для обеспечения питания подаются на другой контакт, традиционно обозначаемый DCIN. Но об этом мы продолжить говорить уже в следующем номере нашего журнала.

 

Перейти ко второй части статьи


 

Понравилась статья? Узнали что-то новое и интересное?

Вы можете выразить благодарность автору статьи скромным денежным переводом.

рублей Яндекс.Деньгами
на счет 41001206996010 (Развитие журнала "Мир периферийных устройства ПК")
  שיטות טיפול רגשי לילדים.

Профессиональная инфракрасная паяльная станция


Яндекс.Метрика
Рейтинг@Mail.ru Яндекс цитирования